# # These groups are read by MariaDB server. # Use it for options that only the server (but not clients) should see # # See the examples of server my.cnf files in /usr/share/mysql/ # [mysqld] # Mandatory settings: these settings are REQUIRED for proper galera cluster operation query_cache_size=0 binlog_format=ROW default_storage_engine=innodb innodb_autoinc_lock_mode=2 # innodb_doublewrite=1 - this is the default and it should stay this way # wsrep provider configuration: basic wsrep options wsrep_provider=/usr/lib64/galera/libgalera_smm.so wsrep_provider_options="gcache.size=2G" wsrep_cluster_name='resnet' # Only print nodes if we are NOT db3 wsrep_cluster_address=gcomm:// # Become master if we ARE db3 wsrep_provider_options="pc.bootstrap=1" wsrep_node_address='172.16.67.7' wsrep_node_name='db3' # http://www.percona.com/doc/percona-xtradb-cluster/5.5/wsrep-system-index.html#wsrep_sst_method # http://www.codership.com/wiki/doku.php?id=sst_mysql wsrep_sst_method=xtrabackup #wsrep_sst_method=rsync #wsrep_sst_method=mysqldump wsrep_sst_auth=repl:****** # additional "frequently used" wsrep settings #wsrep_node_incoming_address='192.168.10.2' # This variable controls the number of threads that can apply replication transactions # in parallel. Galera supports true parallel replication, replication that applies transactions # in parallel only when it is safe to do so. wsrep_slave_threads=2 # back_log is the number of connections the operating system can keep in # the listen queue, before the MySQL connection manager thread has # processed them. If you have a very high connection rate and experience # "connection refused" errors, you might need to increase this value. # Check your OS documentation for the maximum value of this parameter. # Attempting to set back_log higher than your operating system limit # will have no effect. back_log = 100 # The maximum amount of concurrent sessions the MySQL server will # allow. One of these connections will be reserved for a user with # SUPER privileges to allow the administrator to login even if the # connection limit has been reached. max_connections = 120 # The number of open tables for all threads. Increasing this value # increases the number of file descriptors that mysqld requires. # Therefore you have to make sure to set the amount of open files # allowed to at least 4096 in the variable "open-files-limit" in # section [mysqld_safe] table_cache = 1024 # The maximum size of a query packet the server can handle as well as # maximum query size server can process (Important when working with # large BLOBs). enlarged dynamically, for each connection. max_allowed_packet = 16M # The size of the cache to hold the SQL statements for the binary log # during a transaction. If you often use big, multi-statement # transactions you can increase this value to get more performance. All # statements from transactions are buffered in the binary log cache and # are being written to the binary log at once after the COMMIT. If the # transaction is larger than this value, temporary file on disk is used # instead. This buffer is allocated per connection on first update # statement in transaction binlog_cache_size = 16M # Maximum allowed size for a single HEAP (in memory) table. This option # is a protection against the accidential creation of a very large HEAP # table which could otherwise use up all memory resources. max_heap_table_size = 64M # Sort buffer is used to perform sorts for some ORDER BY and GROUP BY # queries. If sorted data does not fit into the sort buffer, a disk # based merge sort is used instead - See the "Sort_merge_passes" # status variable. Allocated per thread if sort is needed. sort_buffer_size = 8M # This buffer is used for the optimization of full JOINs (JOINs without # indexes). Such JOINs are very bad for performance in most cases # anyway, but setting this variable to a large value reduces the # performance impact. See the "Select_full_join" status variable for a # count of full JOINs. Allocated per thread if full join is found join_buffer_size = 64M # How many threads we should keep in a cache for reuse. When a client # disconnects, the client's threads are put in the cache if there aren't # more than thread_cache_size threads from before. This greatly reduces # the amount of thread creations needed if you have a lot of new # connections. (Normally this doesn't give a notable performance # improvement if you have a good thread implementation.) thread_cache_size = 8 # If your system supports the memlock() function call, you might want to # enable this option while running MySQL to keep it locked in memory and # to avoid potential swapping out in case of high memory pressure. Good # for performance. memlock # Thread stack size to use. This amount of memory is always reserved at # connection time. MySQL itself usually needs no more than 64K of # memory, while if you use your own stack hungry UDF functions or your # OS requires more stack for some operations, you might need to set this # to a higher value. thread_stack = 192K # Set the default transaction isolation level. Levels available are: # READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, SERIALIZABLE transaction_isolation = REPEATABLE-READ # Maximum size for internal (in-memory) temporary tables. If a table # grows larger than this value, it is automatically converted to disk # based table This limitation is for a single table. There can be many # of them. tmp_table_size = 64M # Enable binary logging. This is required for acting as a MASTER in a # replication configuration. You also need the binary log if you need # the ability to do point in time recovery from your latest backup. #log-bin=mysql-bin # Log slow queries. Slow queries are queries which take more than the # amount of time defined in "long_query_time" or which do not use # indexes well, if log_long_format is enabled. It is normally good idea # to have this turned on if you frequently add new queries to the # system. slow_query_log #slow_query_log_file = /var/log/mysql-slow-queries.log # All queries taking more than this amount of time (in seconds) will be # trated as slow. Do not use "1" as a value here, as this will result in # even very fast queries being logged from time to time (as MySQL # currently measures time with second accuracy only). long_query_time = 2 #*** MyISAM Specific options # Size of the Key Buffer, used to cache index blocks for MyISAM tables. # Do not set it larger than 30% of your available memory, as some memory # is also required by the OS to cache rows. Even if you're not using # MyISAM tables, you should still set it to 8-64M as it will also be # used for internal temporary disk tables. key_buffer_size = 8M # Size of the buffer used for doing full table scans of MyISAM tables. # Allocated per thread, if a full scan is needed. read_buffer_size = 4M # When reading rows in sorted order after a sort, the rows are read # through this buffer to avoid disk seeks. You can improve ORDER BY # performance a lot, if set this to a high value. # Allocated per thread, when needed. read_rnd_buffer_size = 4M # MyISAM uses special tree-like cache to make bulk inserts (that is, # INSERT ... SELECT, INSERT ... VALUES (...), (...), ..., and LOAD DATA # INFILE) faster. This variable limits the size of the cache tree in # bytes per thread. Setting it to 0 will disable this optimisation. Do # not set it larger than "key_buffer_size" for optimal performance. # This buffer is allocated when a bulk insert is detected. bulk_insert_buffer_size = 4M # This buffer is allocated when MySQL needs to rebuild the index in # REPAIR, OPTIMIZE, ALTER table statements as well as in LOAD DATA INFILE # into an empty table. It is allocated per thread so be careful with # large settings. myisam_sort_buffer_size = 4M # The maximum size of the temporary file MySQL is allowed to use while # recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. # If the file-size would be bigger than this, the index will be created # through the key cache (which is slower). myisam_max_sort_file_size = 256M # If a table has more than one index, MyISAM can use more than one # thread to repair them by sorting in parallel. This makes sense if you # have multiple CPUs and plenty of memory. myisam_repair_threads = 4 # Automatically check and repair not properly closed MyISAM tables. myisam_recover # *** INNODB Specific options *** # Additional memory pool that is used by InnoDB to store metadata # information. If InnoDB requires more memory for this purpose it will # start to allocate it from the OS. As this is fast enough on most # recent operating systems, you normally do not need to change this # value. SHOW INNODB STATUS will display the current amount used. innodb_additional_mem_pool_size = 16M # InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and # row data. The bigger you set this the less disk I/O is needed to # access data in tables. On a dedicated database server you may set this # parameter up to 80% of the machine physical memory size. Do not set it # too large, though, because competition of the physical memory may # cause paging in the operating system. Note that on 32bit systems you # might be limited to 2-3.5G of user level memory per process, so do not # set it too high. innodb_buffer_pool_size = 1498M # InnoDB stores data in one or more data files forming the tablespace. # If you have a single logical drive for your data, a single # autoextending file would be good enough. In other cases, a single file # per device is often a good choice. You can configure InnoDB to use raw # disk partitions as well - please refer to the manual for more info # about this. #innodb_data_file_path = ibdata1:10M:autoextend # Make one innodb file per table innodb_file_per_table # Number of threads allowed inside the InnoDB kernel. The optimal value # depends highly on the application, hardware as well as the OS # scheduler properties. A too high value may lead to thread thrashing. innodb_thread_concurrency = 16 # If set to 1, InnoDB will flush (fsync) the transaction logs to the # disk at each commit, which offers full ACID behavior. If you are # willing to compromise this safety, and you are running small # transactions, you may set this to 0 or 2 to reduce disk I/O to the # logs. Value 0 means that the log is only written to the log file and # the log file flushed to disk approximately once per second. Value 2 # means the log is written to the log file at each commit, but the log # file is only flushed to disk approximately once per second. innodb_flush_log_at_trx_commit = 1 # The size of the buffer InnoDB uses for buffering log data. As soon as # it is full, InnoDB will have to flush it to disk. As it is flushed # once per second anyway, it does not make sense to have it very large # (even with long transactions). innodb_log_buffer_size = 8M # Size of each log file in a log group. You should set the combined size # of log files to about 25%-100% of your buffer pool size to avoid # unneeded buffer pool flush activity on log file overwrite. However, # note that a larger logfile size will increase the time needed for the # recovery process. innodb_log_file_size = 256M # Total number of files in the log group. A value of 2-3 is usually good # enough. innodb_log_files_in_group = 3 # Maximum allowed percentage of dirty pages in the InnoDB buffer pool. # If it is reached, InnoDB will start flushing them out agressively to # not run out of clean pages at all. This is a soft limit, not # guaranteed to be held. innodb_max_dirty_pages_pct = 90 # How long an InnoDB transaction should wait for a lock to be granted # before being rolled back. InnoDB automatically detects transaction # deadlocks in its own lock table and rolls back the transaction. If you # use the LOCK TABLES command, or other transaction-safe storage engines # than InnoDB in the same transaction, then a deadlock may arise which # InnoDB cannot notice. In cases like this the timeout is useful to # resolve the situation. innodb_lock_wait_timeout = 120 # These two groups are only read by MariaDB servers, not by MySQL. # If you use the same .cnf file for MySQL and MariaDB, # you can put MariaDB-only options here [mariadb] [mariadb-5.5] [sst] # Galera State Snapshot Transfer # Format used by XtraBackup to copy data # valid options: xbstream, tar # http://www.percona.com/doc/percona-xtradb-cluster/5.5/manual/xtrabackup_sst.html#streamfmt streamfmt=xbstream # Transport container for the above # valid options: socat, nc # http://www.percona.com/doc/percona-xtradb-cluster/5.5/manual/xtrabackup_sst.html#transferfmt transferfmt=socat [xtrabackup] datadir=/var/lib/mysql