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Abstract—Common Table Expressions (CTEs), introduced in 

the SQL Standard 1999, are similar to subroutines in 

programming languages: they can be referenced from multiple 

places in a query and may refer to themselves, providing 

recursive queries. Although many RDBMSs implemented this 

feature, but not in full. Until recently MariaDB did not have this 

feature either. This article describes CTE overall and looks 

through some interesting cases that are implemented in MariaDB 

only, like non-linear recursion and mutual recursion. It also 

compares optimizations for non-recursive CTEs across different 

RDBMSs. Finally, the results of experiments comparing 

computation of recursive CTEs for MariaDB and PostgreSQL 

are presented. 
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I. INTRODUCTION 

In spite of the fact that first SQL Standard appeared in 

1986, there was lack of standard recursive constructions for 

over a decade from this period. Nevertheless, as it was 

essential to write hierarchical queries in some cases, several 

DBMSs introduced their own recursive constructions. One of 

the most popular is CONNECT BY presented by Oracle in 

1980's [3]. And still now, even after standard recursive 

construction common table expression (CTE) was officially 

introduced, there are many researches on presentation of 

recursive queries, especially on using Object-Relational 

Mapping to make recursion [6], [7], [8], [9]. 

First attempt of CTE was in the SQL Standard 1999 [1] 

and from this version of Standard CTE specification didn’t 

change until the latest considered version SQL:2008. First 

implementation of CTEs dates back to 1997, to RDBMS DB2. 

Later there was a period of stagnation and only in 2003-2005 

other RDBMSs started to implement CTE [2]. Nowadays CTE 

are supported by most major RDBMSs, but still none of them 

support all CTE features that are described in the SQL 

Standard. Not so long ago MariaDB introduced its own 

implementation of CTE on that one of the authors has worked 

with other MariaDB developers. This realization includes 

features that have never been introduced by other RDBMS, 

like mutual recursion and non-linear recursion. A little later 

MySQL Labs included in their code an implementation of 

CTE as well. 

As soon as CTE is defined in a query, this CTE may be 

used several times in the same query, thus the role of CTEs is 

similar to that of subroutines in imperative programming 

languages. 

The SQL Standard requires that results of the query 

execution are the same as if CTEs would be executed only 

once during the query processing. This requirement suggests a 

straightforward implementation of CTE that computes CTE as 

a separate query and materializes results in a temporary table. 

However, this implementation might result in a poor 

performance. It can happen in the case of CTE defining a large 

number of records in a query with additional conditions on 

CTE data restricting it to a single row.  

An efficient implementation of CTE, even for non- 

recursive queries, is a non-trivial task. 

These days more and more benchmarks include CTE 

usage. To compare, TPC-H 1999 Benchmark has no tests 

using CTE, while in TPC-H 2011 38 of 100 queries contain 

CTE [5]. To provide fast and low-cost CTE computation a lot 

of attention was given to researches on optimization 

techniques for CTE. Articles [10], [11], [12] provide such 

techniques for recursive CTEs. MariaDB also introduced its 

own optimization technique for non-recursive CTEs, that also 

concern non-mergeable views and derived tables.    

In this article we will discuss the implementation of CTE 

due to MariaDB Server special characteristics. We will also 

overview different optimization techniques for non-recursive 

CTEs. Non-recursive CTEs are handled like derived tables, 



but recursive ones are a much more difficult case. Moreover, 

they are computed in a different way. 

Firstly, it should be checked if recursion is linear (if there 

is no special variable set to work with non-linear recursion). 

Secondly, all mutual recursive CTEs are defined, if there are 

any. At the same time all Standard restrictions on CTEs are 

checked. Lastly, an important process of checking when 

recursion should be stopped takes place on the execution 

stage. As regards optimization techniques for non-recursive 

CTEs, we describe most popular of them with proper 

examples and compare different RDBMSs approaches. 

The contributions of this work include: 

 Techniques for efficient implementation of several 

special cases of CTEs 

 Techniques for implementation of mutual recursion 

of CTEs 

 An implementation of both non-recursive and 

recursive CTEs in MariaDB 

This paper is organized as follows: Section 2 discusses 

non-recursive CTEs in general and Section 3 describes 

recursive ones. Also Section 3 shows how computation of 

recursive CTEs in MariaDB goes and looks through different 

recursion cases and how recursion stops. Section 4 compares 

optimizations in different RDBMSs and Section 5 presents the 

results of experiments on two RDBMSs MariaDB and 

PostgreSQL. In Section 6 conclusion is made. 

II. NON-RECURSIVE CTE 

CTE can be introduced as temporary result set, that is 

defined within the scope of a single SELECT, INSERT, 

UPDATE, DELETE or CREATE VIEW statement. In 

MariaDB CTE can be defined only in SELECT or/and 

CREATE VIEW statements. 

Each definition of non-recursive CTE consists of 

obligatory WITH keyword, CTE header, optional column list 

and query specifying this CTE. 

 

WITH expression_name [( column_name [,...] )] 

AS <CTE_query_specification>  

 
Non-recursive CTEs can be called 'query-local views' and 

are similar to derived tables. As well as derived tables they 

aren't stored in the database. This means that CTEs live only 

for the duration of the query where they were defined. 

However, unlike derived table, they can be referenced 

multiple times in the same query. Instead of redefining the 

same derived table every time CTE can be used with the aim 

of making query more readable. 

In MariaDB after CTE identification all references on non-

recursive CTEs are formed as references on derived tables. On 

further phases of contextual analysis, optimization and 

execution non-recursive CTEs are handled as derived tables. 

The only thing that should be checked is if there are any 

renamed columns in the CTE definition because derived table 

doesn't have such an opportunity. 

III. RECURSIVE CTE 

The greatest advantage that using CTE provides is that it 

can reference to itself so the recursive query can be made.  

Each definition of recursive CTE consists of obligatory 

WITH RECURSIVE keyword, CTE header, optional column 

list and seed and recursive parts specifying this CTE. Both 

seed part and recursive part can be defined by several 

SELECT statements and they should be joined by UNION or 

UNION ALL operations. 

 
WITH RECURSIVE  

expression_name [( column_name [,...] )] 

AS ( [<seed_part>] UNION [ALL]  

     <recursive_part> ) [,...] 

A. Computation 

At the first step all the components of a seed part are 

computed. At all further steps a recursive part is computed 

using result received from the previous step. The Standard 

requires that only linear recursion can be used. This means 

that on each step of recursion only those records can be used 

that are received from the previous step and have never been 

received before. In the case of linear recursion the process of 

computation of recursive CTE stops when there are no new 

records collected. 

In MariaDB computation of recursive CTE goes according 

to the following scenario: 

On the preparatory stage dependency matrices for all CTEs 

that are used in the query are built to find out recursive CTEs. 

Also on this stage it is checked if there are enough seed parts 

for recursive CTEs. 

On the stage of the contextual analysis the structure of 

temporary tables where results will be saved is defined using a 

seed part query. Several temporary tables are created: table 

where a final result will be stored, table for the new records 

and tables for each reference to the recursive CTE. Further all 

Standard restrictions are checked on this stage. 

Lastly, on the execution stage CTE is executed in cycle 

using temporary tables defined on the previous stage. At the 

beginning these temporary tables contain the result of 

execution of the seed part. On each iteration content of the 

table for new records is used as the entire for the recursive 

part. The result of the recursive part execution is added to the 

table where the final result is stored and new received lines are 

written in the table for the new lines. If there is no data in the 

table for the new lines, the process ends. Otherwise, the result 

is added to the tables for the recursive links.  



As stated before, there is one temporary table for each 

reference to the recursive CTE. All these tables are equal to 

each other, but storing them all is determined by 

characteristics of MariaDB server. Later an optimization 

which solves this problem will be made. 

Also it must be said, that reference for the recursive CTE 

computed once will never be computed again. 

B. Non-linear recursion 

Non-linear recursion as it was said before is forbidden by 

Standard. However, MariaDB supports this feature.  

Non-linear recursion can be used when some Standard 

restrictions on recursive CTEs need to be ignored. So, non-

linear recursion can be used when: 

 there is more than one reference on recursive CTEs 

in a FROM clause of recursive_part of CTE; 

 there are some references on recursive CTEs in the 

right part of LEFT JOIN or in the left part of RIGHT 

JOIN; 

 there are some references on recursive CTEs in a 

subquery that is defined in a WHERE clause of some 

recursive CTE; 

The main difference in computation of non-linear 

recursion from linear one is that on each iteration as the 

entries for a recursive part not only last received records are 

used, but all received records. So, in MariaDB implementation 

of CTE, a table for new lines contains the same data as the 

table for the final result but with new lines added. The 

recursion stops when the comparison of these two tables 

shows that they are the same.   

Whereas in some cases a query looks cleaner and 

executing converges faster, usage of non-linear recursion 

needs careful user's control. For instance, using UNION ALL 

should be checked by the user himself to prevent the same 

results on each step of recursion. It will be better to use 

UNION in this case. 

If the user is ready to use non-linear recursion in MariaDB, 

he can set @@standard_compliant_cte=0 and work with it. 

C. Mutual recursion 

Mutual recursion is said to be one of the most interesting 

forms of recursion. It is such a form where two or more CTEs 

refer to each other. 

In MariaDB all mutual recursive CTEs are searched on the 

preparatory stage. For every recursive_part of CTE a search is 

made for all recursive_parts mutually recursive with the CTE 

where it was defined. It must be said that recursive CTE is 

mutually recursive with itself. All found mutually recursive 

CTEs are linked into a ring chain. Further, it is checked if 

there are enough seed_parts for a mutually recursive group. 

There should be at least one anchor for the mutually recursive 

group. 

Mutual recursion is allowed by Standard, but restricted in 

the way that it can be transformed into common recursion. An 

example of the non-restricted case of mutual recursion can be 

this: when there are two recursive CTEs, where on each 

iteration one CTE waits until second one ends computation 

with the content of first CTE as entire, and only after that goes 

to the next step. MariaDB supports Standard version. It also 

must be said that MariaDB is the first RDBMS that 

implemented mutual recursion and the only one who did it at 

the time of writing.  

D. How recursion stops 

In MariaDB using linear recursion during a tree or a 

directed acyclic graph walking execution is guaranteed to 

stop. However, in some other cases the user has to make some 

conditions to prevent a looped process. 

When a transitive closure is computed, in the definition of 

recursive CTE only UNION can be used to join recursive and 

seed parts. For instance, when the user needs to find all cities 

that he can reach from some place by bus, there can be more 

than one bus route with the same point of arrival. If there are 

such routes and the user applies UNION ALL, some 

destinations will be added repeatedly and bus routes will be 

searched again. This will lead to infinite process.  

In the case when the paths over the graph with the loops 

need to be computed, for example, all paths consist of cities 

that can be reached by bus from some place, there might be 

special condition written into WHERE in the recursive part of 

CTE definition to stop influentially increasing paths 

computing. As well as in the previous case there can be some 

bus routes with the same destination. Adding a city that 

already exists in the path will lead to overlooped process, 

that's why a condition that checks if city exists in the path 

needs to be written.    

Also in MariaDB there is a safety measure to control 

infinite process - special variable 

@@max_recursive_iterations that controls count of iterations 

during recursive CTE computing. The user can change it 

himself if needed. 

IV. OPTIMIZATIONS 

A basic algorithm of CTE executing stores results of CTE 
in a temporary table. When the query where CTE was defined 
calls for CTE results, information is taken from this temporary 
table. Although this algorithm always works, in most cases it is 
not optimal. Some optimization techniques on non-recursive 
CTEs are discussed and a comparison between different 
RDBMSs approaches is made below. 

A. CTE merging 

During this optimization CTE is merged into parent's join 

such that parts of CTE definition replace corresponding parts 

of the parent query. There are some restrictions on CTE so 

that it can be merged: GROUP BY, DISTINCT, etc can't be 

used in CTE definition. 



This optimization technique is the same as 

ALGORITHM=MERGE for views in MySQL. 

On the Fig. 1 the example of how this technique works is 

shown. Upper listing shows the initial query and lower shows 

how optimizer will transform it. 

WITH engineers AS ( 
 SELECT *  
 FROM employees 
 WHERE dept = 'Development') 
SELECT * 
FROM engineers E, support_cases SC 
WHERE E.name = SC.assignee AND  

      SC.created = '2016-09-30' AND       

      E.location = 'Amsterdam' 

 

SELECT * 
FROM employees E, support_cases SC 
WHERE E.dept = 'Development' AND 
      E.name = SC.assignee AND  

      SC.created = '2016-09-30' AND           

      E.location = ’Amsterdam’ 

Fig. 1.  Example of  CTE merging. 

B. Condition pushdown 

A condition pushdown is used when merging is not 

possible, for example when CTE has GROUP BY. Conditions 

in the WHERE clause of a query that depend only on the 

columns of CTEs are pushed into the query defining this 

CTEs. In the general case conditions can be pushed only in the 

HAVING clause of the CTEs, but at some conditions it makes 

sense to push them into the WHERE clause. As a result, a 

temporary table is made smaller. 

Besides CTEs, this optimization works for derived tables 

and non-mergiable views. 

On the Fig. 2 the example of how this technique works is 

shown. Upper listing shows the initial query and lower shows 

how optimizer will transform it. 

WITH sales_per_year AS ( 
 SELECT year(order.date) AS years,  
        sum(order.amount) AS sales 
 FROM order 
 GROUP BY year) 
SELECT * 
FROM sales_per_year 
WHERE year IN ('2015','2016') 

 

WITH sales_per_year AS ( 
 SELECT year(order.date) AS years,  
        sum(order.amount) AS sales 
 FROM order 
 WHERE year IN ('2015','2016') 
 GROUP BY year) 
SELECT * 
FROM sales_per_year 

Fig. 2. Example of condition pushdown. 

C. CTE reuse 

The main idea of this method is to fill CTE once and then 

use multiple times. It works with condition pushdown only in 

difficult cases, for instance, when CTE is used in different 

parts of the query with different restrictions. In this case 

disjunction of these conditions can be pushed into CTE. 

D. Comparison of optimizations in MariaDB, PostgreSQL, 

MS SQL Server, MySQL 8.0.0-labs 

MariaDB as MS SQL Server supports merging and 

condition pushdown. PostgreSQL supports reuse only. 

MySQL 8.0.0-labs supports both merging and reuse and it 

works in such way: it tries merging otherwise makes reuse. 

TABLE I.  EXISTENCE OF OPTIMIZATION TECHNIQUES IN DIFFERENT 

RDBMSS 

DBMS 
Optimization technique exists 

CTE merge Condition pushdown CTE reuse 

MariaDB 10.2 yes yes no 

MS SQL Server yes yes no 

PostgreSQL no no yes 
MySQL  

8.0.0-Labs yes no yes 

 

V. THE RESULTS OF EXPERIMENTS ON MARIADB AND 

POSTGRESQL 

Tests have been conducted on the computer with processor 

Intel(R) Core(TM) i7-4710HQ CPU, 2.50GHz, 6144 KB 

cache size, 7 GB RAM on Opensuse 13.2 operating 

system. We tested following database systems: PostgreSQL 

9.3 and MariaDB 10.2. 

The experiments were made in a database containing the 

information about domestic flights in the USA during 2008. 

Database schema consists of the following relations: 

 tab_2008(month, dayofmonth, dep_time, arrtime, 

flightnum, airtime, origin, dest, dist); 

 airports(names); 

We wanted to find multi-destination itineraries. So, we 

decided to find the shortest way between the airports of 

interest by plane. The table airports shows which airports 

should be visited. None of the airports can be visited twice. 

Besides, the plane should leave for the next destination a day 

or more after the previous plane. 

The following query Q1 for MariaDB is shown on Fig.3. 

Script for PostgreSQL has a difference in functions cast(origin 

as char(32)) and locate(tab_2008.dest, s_planes.path). 

Analogue of locate function in PostgreSQL is position 

function and its return type is text, that’s why the result of cast 

function in PostgreSQL in this query will be not char(32), but 

text. 



This query starts from 'IAD' airport in seed_part and looks 

through the table tab_2008 to find flights with 'IAD' as origin 

and one of the airports from table airports as destination. As 

needed destination is found it is checked if it has already been 

visited on the route to prevent repeats. From the received data 

we take only those paths that involve all airports from table 

airports and have the smallest overall distance. 

We've made a query Q1 on table tab_2008 consists of 

different number of records: 587130, 1134055 and 6858079. 

The results of the experiments are shown in TABLE II. 

What can be seen from the table is that the results of tests 

in MariaDB are more than in three times better than in 

PostgreSQL.  

WITH RECURSIVE s_planes (path, dest, dayofmonth, 

dist, it) AS (  
 SELECT cast(origin as char(30)), origin,  

        dayofmonth, 0, 1   
 FROM tab_2008 
 WHERE dayofmonth = 3 AND origin = 'IAD' AND  

       flightnum = 3231 
 UNION 
 SELECT    

  concat(s_planes.path,',',tab_2008.dest),        
  tab_2008.dest, tab_2008.dayofmonth,  
  s_planes.dist+tab_2008.dist, it+1 
 FROM tab_2008, airports, s_planes 
 WHERE  
  tab_2008.origin = s_planes.dest AND  
  locate(tab_2008.dest, s_planes.path)=0 AND   
  tab_2008.dest = airports.name AND 
  tab_2008.dayofmonth > s_planes.dayofmonth) 
SELECT *  
FROM s_planes  
WHERE it = 8 AND  

      dist = (SELECT min(dist)  
              FROM s_planes  
              WHERE it = 8); 

Fig. 3. Query Q1 for MariaDB 

TABLE II. THE RESULTS OF THE QUERY Q1 (OVERALL RESULT) 

DBMS Records count 

587130 1134055 6858079 

MariaDB 16.72 sec 31.97 sec 3 min 9 sec 

PostgreSQL 60.29 sec 1 min 91 sec 11 min 50 sec 

TABLE III. THE RESULTS OF  THE EXPERIMENTS DURING AIRPORTS COUNT 

MINIMIZATION (OVERALL RESULT) 

DBMS Airports count 

4 5 6 7 8 

MariaDB 
2.28 

sec 
3.49 

sec 
5.93 

sec 
14.45 

sec 
31.97 sec 

PostgreSQL 
1.13 

sec 
2.97 

sec 
6.74 

sec 
38.66 

sec 
1 min 91 

sec 

 

 

Also this query Q1 was made on the same tables with 

different number of records but with index on dest column. 

Optimizer didn’t access index so index existence didn’t affect 

on results of the query and further experiments were made on 

tables without indexes. 

Although, we decided to make some other experiments 

and minimize the count of searched airports. So, less steps of 

recursion will be made. We made these experiments only on 

the table with 1134055 records. The results are shown in 

TABLE III. 

When the count of searched airports is 8, MariaDB has 

much better results than PostgreSQL. But during the 

minimization of airports count PostgreSQL results become 

closer and closer to MariaDB ones. When the count of airports 

is less than 5 PostgreSQL results become better than MariaDB 

and this trend continues. 

VI. CONCLUSION 

In this paper we presented a number of techniques for 

execution of CTEs and provided an implementation of these 

techniques for MariaDB. We described in details recursive 

CTE computation and mutual recursive CTE computation. 

Also we discussed in which cases non-linear recursion can be 

used. We compared existence of optimization techniques for 

non-recursive CTE in different databases.  

What is more, we made experiments using flights table on 

PostgreSQL and MariaDB. They showed that PostgreSQL has 

better results only when few steps of recursion are needed. For 

the long recursive process on a huge amount of data MariaDB 

is a better choice.  

Authors want to gratitude MariaDB developers Igor 

Babaev and Sergey Petrunya for their participating in work on 

MariaDB CTE implementation and help in writing this article. 
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