
Implementing Common Table Expressions

for MariaDB

Galina Shalygina

Mathematics and Mechanics Department

Saint Petersburg State University

Saint-Petersburg, Russia

Boris Novikov

Mathematics and Mechanics Department

Saint Petersburg State University

Saint-Petersburg, Russia

Abstract—Common Table Expressions (CTEs), introduced in

the SQL Standard 1999, are similar to subroutines in

programming languages: they can be referenced from multiple

places in a query and may refer to themselves, providing

recursive queries. Although many RDBMSs implemented this

feature, but not in full. Until recently MariaDB did not have this

feature either. This article describes CTE overall and looks

through some interesting cases that are implemented in MariaDB

only, like non-linear recursion and mutual recursion. It also

compares optimizations for non-recursive CTEs across different

RDBMSs. Finally, the results of experiments comparing

computation of recursive CTEs for MariaDB and PostgreSQL

are presented.

Keywords—common table expressions; optimization; MariaDB;

I. INTRODUCTION

In spite of the fact that first SQL Standard appeared in

1986, there was lack of standard recursive constructions for

over a decade from this period. Nevertheless, as it was

essential to write hierarchical queries in some cases, several

DBMSs introduced their own recursive constructions. One of

the most popular is CONNECT BY presented by Oracle in

1980's [3]. And still now, even after standard recursive

construction common table expression (CTE) was officially

introduced, there are many researches on presentation of

recursive queries, especially on using Object-Relational

Mapping to make recursion [6], [7], [8], [9].

First attempt of CTE was in the SQL Standard 1999 [1]

and from this version of Standard CTE specification didn’t

change until the latest considered version SQL:2008. First

implementation of CTEs dates back to 1997, to RDBMS DB2.

Later there was a period of stagnation and only in 2003-2005

other RDBMSs started to implement CTE [2]. Nowadays CTE

are supported by most major RDBMSs, but still none of them

support all CTE features that are described in the SQL

Standard. Not so long ago MariaDB introduced its own

implementation of CTE on that one of the authors has worked

with other MariaDB developers. This realization includes

features that have never been introduced by other RDBMS,

like mutual recursion and non-linear recursion. A little later

MySQL Labs included in their code an implementation of

CTE as well.

As soon as CTE is defined in a query, this CTE may be

used several times in the same query, thus the role of CTEs is

similar to that of subroutines in imperative programming

languages.

The SQL Standard requires that results of the query

execution are the same as if CTEs would be executed only

once during the query processing. This requirement suggests a

straightforward implementation of CTE that computes CTE as

a separate query and materializes results in a temporary table.

However, this implementation might result in a poor

performance. It can happen in the case of CTE defining a large

number of records in a query with additional conditions on

CTE data restricting it to a single row.

An efficient implementation of CTE, even for non-

recursive queries, is a non-trivial task.

These days more and more benchmarks include CTE

usage. To compare, TPC-H 1999 Benchmark has no tests

using CTE, while in TPC-H 2011 38 of 100 queries contain

CTE [5]. To provide fast and low-cost CTE computation a lot

of attention was given to researches on optimization

techniques for CTE. Articles [10], [11], [12] provide such

techniques for recursive CTEs. MariaDB also introduced its

own optimization technique for non-recursive CTEs, that also

concern non-mergeable views and derived tables.

In this article we will discuss the implementation of CTE

due to MariaDB Server special characteristics. We will also

overview different optimization techniques for non-recursive

CTEs. Non-recursive CTEs are handled like derived tables,

but recursive ones are a much more difficult case. Moreover,

they are computed in a different way.

Firstly, it should be checked if recursion is linear (if there

is no special variable set to work with non-linear recursion).

Secondly, all mutual recursive CTEs are defined, if there are

any. At the same time all Standard restrictions on CTEs are

checked. Lastly, an important process of checking when

recursion should be stopped takes place on the execution

stage. As regards optimization techniques for non-recursive

CTEs, we describe most popular of them with proper

examples and compare different RDBMSs approaches.

The contributions of this work include:

 Techniques for efficient implementation of several

special cases of CTEs

 Techniques for implementation of mutual recursion

of CTEs

 An implementation of both non-recursive and

recursive CTEs in MariaDB

This paper is organized as follows: Section 2 discusses

non-recursive CTEs in general and Section 3 describes

recursive ones. Also Section 3 shows how computation of

recursive CTEs in MariaDB goes and looks through different

recursion cases and how recursion stops. Section 4 compares

optimizations in different RDBMSs and Section 5 presents the

results of experiments on two RDBMSs MariaDB and

PostgreSQL. In Section 6 conclusion is made.

II. NON-RECURSIVE CTE

CTE can be introduced as temporary result set, that is

defined within the scope of a single SELECT, INSERT,

UPDATE, DELETE or CREATE VIEW statement. In

MariaDB CTE can be defined only in SELECT or/and

CREATE VIEW statements.

Each definition of non-recursive CTE consists of

obligatory WITH keyword, CTE header, optional column list

and query specifying this CTE.

WITH expression_name [(column_name [,...])]

AS <CTE_query_specification>

Non-recursive CTEs can be called 'query-local views' and

are similar to derived tables. As well as derived tables they

aren't stored in the database. This means that CTEs live only

for the duration of the query where they were defined.

However, unlike derived table, they can be referenced

multiple times in the same query. Instead of redefining the

same derived table every time CTE can be used with the aim

of making query more readable.

In MariaDB after CTE identification all references on non-

recursive CTEs are formed as references on derived tables. On

further phases of contextual analysis, optimization and

execution non-recursive CTEs are handled as derived tables.

The only thing that should be checked is if there are any

renamed columns in the CTE definition because derived table

doesn't have such an opportunity.

III. RECURSIVE CTE

The greatest advantage that using CTE provides is that it

can reference to itself so the recursive query can be made.

Each definition of recursive CTE consists of obligatory

WITH RECURSIVE keyword, CTE header, optional column

list and seed and recursive parts specifying this CTE. Both

seed part and recursive part can be defined by several

SELECT statements and they should be joined by UNION or

UNION ALL operations.

WITH RECURSIVE

expression_name [(column_name [,...])]

AS ([<seed_part>] UNION [ALL]

 <recursive_part>) [,...]

A. Computation

At the first step all the components of a seed part are

computed. At all further steps a recursive part is computed

using result received from the previous step. The Standard

requires that only linear recursion can be used. This means

that on each step of recursion only those records can be used

that are received from the previous step and have never been

received before. In the case of linear recursion the process of

computation of recursive CTE stops when there are no new

records collected.

In MariaDB computation of recursive CTE goes according

to the following scenario:

On the preparatory stage dependency matrices for all CTEs

that are used in the query are built to find out recursive CTEs.

Also on this stage it is checked if there are enough seed parts

for recursive CTEs.

On the stage of the contextual analysis the structure of

temporary tables where results will be saved is defined using a

seed part query. Several temporary tables are created: table

where a final result will be stored, table for the new records

and tables for each reference to the recursive CTE. Further all

Standard restrictions are checked on this stage.

Lastly, on the execution stage CTE is executed in cycle

using temporary tables defined on the previous stage. At the

beginning these temporary tables contain the result of

execution of the seed part. On each iteration content of the

table for new records is used as the entire for the recursive

part. The result of the recursive part execution is added to the

table where the final result is stored and new received lines are

written in the table for the new lines. If there is no data in the

table for the new lines, the process ends. Otherwise, the result

is added to the tables for the recursive links.

As stated before, there is one temporary table for each

reference to the recursive CTE. All these tables are equal to

each other, but storing them all is determined by

characteristics of MariaDB server. Later an optimization

which solves this problem will be made.

Also it must be said, that reference for the recursive CTE

computed once will never be computed again.

B. Non-linear recursion

Non-linear recursion as it was said before is forbidden by

Standard. However, MariaDB supports this feature.

Non-linear recursion can be used when some Standard

restrictions on recursive CTEs need to be ignored. So, non-

linear recursion can be used when:

 there is more than one reference on recursive CTEs

in a FROM clause of recursive_part of CTE;

 there are some references on recursive CTEs in the

right part of LEFT JOIN or in the left part of RIGHT

JOIN;

 there are some references on recursive CTEs in a

subquery that is defined in a WHERE clause of some

recursive CTE;

The main difference in computation of non-linear

recursion from linear one is that on each iteration as the

entries for a recursive part not only last received records are

used, but all received records. So, in MariaDB implementation

of CTE, a table for new lines contains the same data as the

table for the final result but with new lines added. The

recursion stops when the comparison of these two tables

shows that they are the same.

Whereas in some cases a query looks cleaner and

executing converges faster, usage of non-linear recursion

needs careful user's control. For instance, using UNION ALL

should be checked by the user himself to prevent the same

results on each step of recursion. It will be better to use

UNION in this case.

If the user is ready to use non-linear recursion in MariaDB,

he can set @@standard_compliant_cte=0 and work with it.

C. Mutual recursion

Mutual recursion is said to be one of the most interesting

forms of recursion. It is such a form where two or more CTEs

refer to each other.

In MariaDB all mutual recursive CTEs are searched on the

preparatory stage. For every recursive_part of CTE a search is

made for all recursive_parts mutually recursive with the CTE

where it was defined. It must be said that recursive CTE is

mutually recursive with itself. All found mutually recursive

CTEs are linked into a ring chain. Further, it is checked if

there are enough seed_parts for a mutually recursive group.

There should be at least one anchor for the mutually recursive

group.

Mutual recursion is allowed by Standard, but restricted in

the way that it can be transformed into common recursion. An

example of the non-restricted case of mutual recursion can be

this: when there are two recursive CTEs, where on each

iteration one CTE waits until second one ends computation

with the content of first CTE as entire, and only after that goes

to the next step. MariaDB supports Standard version. It also

must be said that MariaDB is the first RDBMS that

implemented mutual recursion and the only one who did it at

the time of writing.

D. How recursion stops

In MariaDB using linear recursion during a tree or a

directed acyclic graph walking execution is guaranteed to

stop. However, in some other cases the user has to make some

conditions to prevent a looped process.

When a transitive closure is computed, in the definition of

recursive CTE only UNION can be used to join recursive and

seed parts. For instance, when the user needs to find all cities

that he can reach from some place by bus, there can be more

than one bus route with the same point of arrival. If there are

such routes and the user applies UNION ALL, some

destinations will be added repeatedly and bus routes will be

searched again. This will lead to infinite process.

In the case when the paths over the graph with the loops

need to be computed, for example, all paths consist of cities

that can be reached by bus from some place, there might be

special condition written into WHERE in the recursive part of

CTE definition to stop influentially increasing paths

computing. As well as in the previous case there can be some

bus routes with the same destination. Adding a city that

already exists in the path will lead to overlooped process,

that's why a condition that checks if city exists in the path

needs to be written.

Also in MariaDB there is a safety measure to control

infinite process - special variable

@@max_recursive_iterations that controls count of iterations

during recursive CTE computing. The user can change it

himself if needed.

IV. OPTIMIZATIONS

A basic algorithm of CTE executing stores results of CTE
in a temporary table. When the query where CTE was defined
calls for CTE results, information is taken from this temporary
table. Although this algorithm always works, in most cases it is
not optimal. Some optimization techniques on non-recursive
CTEs are discussed and a comparison between different
RDBMSs approaches is made below.

A. CTE merging

During this optimization CTE is merged into parent's join

such that parts of CTE definition replace corresponding parts

of the parent query. There are some restrictions on CTE so

that it can be merged: GROUP BY, DISTINCT, etc can't be

used in CTE definition.

This optimization technique is the same as

ALGORITHM=MERGE for views in MySQL.

On the Fig. 1 the example of how this technique works is

shown. Upper listing shows the initial query and lower shows

how optimizer will transform it.

WITH engineers AS (
 SELECT *
 FROM employees
 WHERE dept = 'Development')
SELECT *
FROM engineers E, support_cases SC
WHERE E.name = SC.assignee AND

 SC.created = '2016-09-30' AND

 E.location = 'Amsterdam'

SELECT *
FROM employees E, support_cases SC
WHERE E.dept = 'Development' AND
 E.name = SC.assignee AND

 SC.created = '2016-09-30' AND

 E.location = ’Amsterdam’

Fig. 1. Example of CTE merging.

B. Condition pushdown

A condition pushdown is used when merging is not

possible, for example when CTE has GROUP BY. Conditions

in the WHERE clause of a query that depend only on the

columns of CTEs are pushed into the query defining this

CTEs. In the general case conditions can be pushed only in the

HAVING clause of the CTEs, but at some conditions it makes

sense to push them into the WHERE clause. As a result, a

temporary table is made smaller.

Besides CTEs, this optimization works for derived tables

and non-mergiable views.

On the Fig. 2 the example of how this technique works is

shown. Upper listing shows the initial query and lower shows

how optimizer will transform it.

WITH sales_per_year AS (
 SELECT year(order.date) AS years,
 sum(order.amount) AS sales
 FROM order
 GROUP BY year)
SELECT *
FROM sales_per_year
WHERE year IN ('2015','2016')

WITH sales_per_year AS (
 SELECT year(order.date) AS years,
 sum(order.amount) AS sales
 FROM order
 WHERE year IN ('2015','2016')
 GROUP BY year)
SELECT *
FROM sales_per_year

Fig. 2. Example of condition pushdown.

C. CTE reuse

The main idea of this method is to fill CTE once and then

use multiple times. It works with condition pushdown only in

difficult cases, for instance, when CTE is used in different

parts of the query with different restrictions. In this case

disjunction of these conditions can be pushed into CTE.

D. Comparison of optimizations in MariaDB, PostgreSQL,

MS SQL Server, MySQL 8.0.0-labs

MariaDB as MS SQL Server supports merging and

condition pushdown. PostgreSQL supports reuse only.

MySQL 8.0.0-labs supports both merging and reuse and it

works in such way: it tries merging otherwise makes reuse.

TABLE I. EXISTENCE OF OPTIMIZATION TECHNIQUES IN DIFFERENT

RDBMSS

DBMS
Optimization technique exists

CTE merge Condition pushdown CTE reuse

MariaDB 10.2 yes yes no

MS SQL Server yes yes no

PostgreSQL no no yes
MySQL

8.0.0-Labs yes no yes

V. THE RESULTS OF EXPERIMENTS ON MARIADB AND

POSTGRESQL

Tests have been conducted on the computer with processor

Intel(R) Core(TM) i7-4710HQ CPU, 2.50GHz, 6144 KB

cache size, 7 GB RAM on Opensuse 13.2 operating

system. We tested following database systems: PostgreSQL

9.3 and MariaDB 10.2.

The experiments were made in a database containing the

information about domestic flights in the USA during 2008.

Database schema consists of the following relations:

 tab_2008(month, dayofmonth, dep_time, arrtime,

flightnum, airtime, origin, dest, dist);

 airports(names);

We wanted to find multi-destination itineraries. So, we

decided to find the shortest way between the airports of

interest by plane. The table airports shows which airports

should be visited. None of the airports can be visited twice.

Besides, the plane should leave for the next destination a day

or more after the previous plane.

The following query Q1 for MariaDB is shown on Fig.3.

Script for PostgreSQL has a difference in functions cast(origin

as char(32)) and locate(tab_2008.dest, s_planes.path).

Analogue of locate function in PostgreSQL is position

function and its return type is text, that’s why the result of cast

function in PostgreSQL in this query will be not char(32), but

text.

This query starts from 'IAD' airport in seed_part and looks

through the table tab_2008 to find flights with 'IAD' as origin

and one of the airports from table airports as destination. As

needed destination is found it is checked if it has already been

visited on the route to prevent repeats. From the received data

we take only those paths that involve all airports from table

airports and have the smallest overall distance.

We've made a query Q1 on table tab_2008 consists of

different number of records: 587130, 1134055 and 6858079.

The results of the experiments are shown in TABLE II.

What can be seen from the table is that the results of tests

in MariaDB are more than in three times better than in

PostgreSQL.

WITH RECURSIVE s_planes (path, dest, dayofmonth,

dist, it) AS (
 SELECT cast(origin as char(30)), origin,

 dayofmonth, 0, 1
 FROM tab_2008
 WHERE dayofmonth = 3 AND origin = 'IAD' AND

 flightnum = 3231
 UNION
 SELECT

 concat(s_planes.path,',',tab_2008.dest),
 tab_2008.dest, tab_2008.dayofmonth,
 s_planes.dist+tab_2008.dist, it+1
 FROM tab_2008, airports, s_planes
 WHERE
 tab_2008.origin = s_planes.dest AND
 locate(tab_2008.dest, s_planes.path)=0 AND
 tab_2008.dest = airports.name AND
 tab_2008.dayofmonth > s_planes.dayofmonth)
SELECT *
FROM s_planes
WHERE it = 8 AND

 dist = (SELECT min(dist)
 FROM s_planes
 WHERE it = 8);

Fig. 3. Query Q1 for MariaDB

TABLE II. THE RESULTS OF THE QUERY Q1 (OVERALL RESULT)

DBMS Records count

587130 1134055 6858079

MariaDB 16.72 sec 31.97 sec 3 min 9 sec

PostgreSQL 60.29 sec 1 min 91 sec 11 min 50 sec

TABLE III. THE RESULTS OF THE EXPERIMENTS DURING AIRPORTS COUNT

MINIMIZATION (OVERALL RESULT)

DBMS Airports count

4 5 6 7 8

MariaDB
2.28

sec
3.49

sec
5.93

sec
14.45

sec
31.97 sec

PostgreSQL
1.13

sec
2.97

sec
6.74

sec
38.66

sec
1 min 91

sec

Also this query Q1 was made on the same tables with

different number of records but with index on dest column.

Optimizer didn’t access index so index existence didn’t affect

on results of the query and further experiments were made on

tables without indexes.

Although, we decided to make some other experiments

and minimize the count of searched airports. So, less steps of

recursion will be made. We made these experiments only on

the table with 1134055 records. The results are shown in

TABLE III.

When the count of searched airports is 8, MariaDB has

much better results than PostgreSQL. But during the

minimization of airports count PostgreSQL results become

closer and closer to MariaDB ones. When the count of airports

is less than 5 PostgreSQL results become better than MariaDB

and this trend continues.

VI. CONCLUSION

In this paper we presented a number of techniques for

execution of CTEs and provided an implementation of these

techniques for MariaDB. We described in details recursive

CTE computation and mutual recursive CTE computation.

Also we discussed in which cases non-linear recursion can be

used. We compared existence of optimization techniques for

non-recursive CTE in different databases.

What is more, we made experiments using flights table on

PostgreSQL and MariaDB. They showed that PostgreSQL has

better results only when few steps of recursion are needed. For

the long recursive process on a huge amount of data MariaDB

is a better choice.

Authors want to gratitude MariaDB developers Igor

Babaev and Sergey Petrunya for their participating in work on

MariaDB CTE implementation and help in writing this article.

REFERENCES

[1] SQL/Foundation ISO/IEC 9075-2:1999.

[2] P. Przymus, A. Boniewicz, M. Burza´nska, and K. Stencel. Recursive
query facilities in relational databases: a survey. In DTA and BSBT,
pages 89–99. Springer, 2010.

[3] Oracle Database Online Documentation, 10g Release 2 (10.2)

[4] D. Stuparu and M. Petrescu. Common Table Expression: Different
Database Systems Approach. Journal of Communication and Computer,
6(3):9–15, 2009.

[5] TPC Benchmark™DS (TPC-DS): The New Decision Support
Benchmark Standard.

[6] Boniewicz, A., Stencel, K., Wiśniewski, P.: Unrolling SQL:1999
recursive queries. In Kim, T.h., Ma, J., Fang, W.c., Zhang, Y.,
Cuzzocrea, A., eds.: Computer Applications for Database, Education,
and Ubiquitous Computing. Volume 352 of Communications in
Computer and Information Science. Springer Berlin Heidelberg (2012)
345–354.

[7] Szumowska, A., Burzańska, M., Wiśniewski, P., Stencel, K.: Efficient
Implementation of Recursive Queries in Major Object Relational
Mapping Systems. In FGIT 2011 78-89.

[8] Burzanska, M., Stencel, K., Suchomska, P., Szumowska, A.,
Wisniewski, P.: Recursive queries using object relational mapping. In
Kim, T.H., Lee, Y.H., Kang, B.H., Slezak, D., eds.: FGIT. Volume 6485
of Lecture Notes in Computer Science., Springer (2010) 42–50.

[9] Wiśniewski, P., Szumowska, A., Burzańska, M., Boniewicz, A.:
Hibernate the recursive queries - defining the recursive queries using
Hibernate ORM. In Eder, J., Bielikov´a, M., Tjoa, A.M., eds.:
ADBIS(2). Volume 789 of CEUR Workshop Proceedings., CEUR-
WS.org (2011) 190–199.

[10] Ghazal, A., Crolotte, A., Seid, D.Y.: Recursive sql query optimization
with k-iteration lookahead. In Bressan, S., K¨ung, J., Wagner, R., eds.:

DEXA. Volume 4080 of Lecture Notes in Computer Science., Springer
(2006) 348–357.

[11] Ordonez, C.: Optimization of linear recursive queries in sql. IEEE
Trans. Knowl. Data Eng. 22 (2010) 264–277.

[12] Burzanska, M., Stencel, K., Wisniewski, P.: Pushing predicates into
recursive sql common table expressions. In Grundspenkis, J., Morzy, T.,
Vossen, G., eds.: ADBIS. Volume 5739 of Lecture Notes in Computer
Science., Springer (2009) 194–205

